/tagged/best/page/2
‘Lacquer box with children, from Qianlong period, Qing Dynasty, 1736-1795’ (via Cinnabar - Wikipedia)

Lacquer box with children, from Qianlong period, Qing Dynasty, 1736-1795’ (via Cinnabar - Wikipedia)

rocketumbl:

山下いくと  エヴァンゲリオンANIMA

(via konishiroku)

royalboiler:

nastyfantomefuret:

Marian Churchland

MTC drawing Pete and Earthing from King city. Sexica from Multiple Warheads. The mysterious creature known as my friend (little green guy) and her dog Moss (he is the best)

royalboiler:

nastyfantomefuret:

Marian Churchland

MTC drawing Pete and Earthing from King city. Sexica from Multiple Warheads. The mysterious creature known as my friend (little green guy) and her dog Moss (he is the best)

(via squarewaves)

spaceplasma:

Dye laser

A dye laser is a laser which uses an organic dye as the lasing medium, usually as a liquid solution. Compared to gases and most solid state lasing media, a dye can usually be used for a much wider range of wavelengths. The wide bandwidth makes them particularly suitable for tunable lasers and pulsed lasers. Moreover, the dye can be replaced by another type in order to generate different wavelengths with the same laser, although this usually requires replacing other optical components in the laser as well.

Dye lasers were independently discovered by P. P. Sorokin and F. P. Schäfer (and colleagues) in 1966.

The dyes used in these lasers contain rather large organic molecules which fluoresce. The incoming light excites the dye molecules into the state of being ready to emit stimulated radiation, the singlet state. In this state, the molecules emit light via fluorescence, and the dye is transparent to the lasing wavelength. Within a microsecond, or less, the molecules will change to their triplet state. In the triplet state, light is emitted via phosphorescence, and the molecules absorb the lasing wavelength, making the dye opaque. Liquid dyes also have an extremely high lasing threshold. Flashlamp pumped lasers need a flash with an extremely short duration, to deliver the large amounts of energy necessary to bring the dye past threshold before triplet absorption overcomes singlet emission. Dye lasers with an external pump laser can direct enough energy of the proper wavelength into the dye with a relatively small amount of input energy, but the dye must be circulated at high speeds to keep the triplet molecules out of the beam path.

In laser medicine these lasers are applied in several areas, including dermatology where they are used to make skin tone more even. The wide range of wavelengths possible allows very close matching to the absorption lines of certain tissues, such as melanin or hemoglobin, while the narrow bandwidth obtainable helps reduce the possibility of damage to the surrounding tissue. They are used to treat port-wine stains and other blood vessel disorders, scars and kidney stones. They can be matched to a variety of inks for tattoo removal, as well as a number of other applications.

In spectroscopy, dye lasers can be used to study the absorption and emission spectra of various materials. Their tunability, (from the near-infrared to the near-ultraviolet), narrow bandwidth, and high intensity allows a much greater diversity than other light sources. The variety of pulse widths, from ultra-short, femto-second pulses to continuous-wave operation, makes them suitable for a wide range of applications, from the study of fluorescent lifetimes and semiconductor properties to lunar laser ranging experiments.

Image Credit: Warsash Scientific

(via masonthegrey-deactivated2013121)

matelotage:

perryface:

vintagegal:

Model poses and the finished paintings of Gil Elvgren

This is awesome.

oh good more

About:

collecting (a lot of) distractions


Following:

w.e
57C
HBM